skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Saito, Shun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The DESI DR2 BAO data, in combination with CMB and different SNIa datasets, exclude the flat ΛCDM model at more than 2.5σ when analyzed through thew0waCDM parametrization for evolving dark energy. This simple parametrization may not accurately capture the behavior of the entire redshift range at late times, which may introduce bias in the results. We use null tests that probe for deviations from flat ΛCDM at late times, independent of any specific dark energy parametrization. We provide several diagnostics for null tests and discuss their advantages and disadvantages. In particular, we derive diagnostics that improve on previous ones, such as the popularOmdiagnostic. The diagnostics are derived from both background and perturbed quantities. Using the combination of DESI DR2 BAO and supernova data, with or without CMB data, we find that deviations from flat ΛCDM are at ∼1σ confidence level in most of the redshift range (more than 1σ for a few small redshift intervals in a few cases). When considering SDSS BAO data instead of DESI BAO data, in combination with PantheonPlus, with or without CMB data, we find even smaller deviations. Since spatial curvature can potentially modify the results, we also test for curvature in the general ΛCDM model and the general FLRW model. While there is slight evidence for nonzero cosmic curvature at lower redshifts in a general ΛCDM model, there is no statistically significant evidence in a general FLRW model. 
    more » « less
    Free, publicly-accessible full text available August 1, 2026
  2. Abstract A major goal of cosmology is to understand the nature of the field(s) which drove primordial Inflation. Through future observations, the statistics of large-scale structure will allow us to probe primordial non-Gaussianity of thecurvature perturbation at the end of Inflation. We show how a new correlation statistic can significantly improve these constraints over conventional methods. Next-generation radio telescope arrays are under construction which will map the density field of neutral hydrogen to high redshifts. These telescopes can operate as an interferometer, able to probe small scales, or as a collection of single dishes, combining signals to map the large scales. We show how to fuse these operating modes in order to measure the squeezed bispectrum with higher precision and greater economy. This leads to constraints on primordial non-Gaussianity that will improve on measurements by Planck,and out-perform other surveys such as Euclid. We forecast that σ(fNLloc)∼ 3, achieved by using a small subset, 𝒪(102- 103), of the total number of accessible triangles. The proposed method identifies a low instrumental noise, systematic-free scale regime, enabling clean squeezed bispectrum measurements. This provides a pristine window into local primordial non-Gaussianity, allowing tight constraints not only on primordial non-Gaussianity, but on any observable that peaks in squeezed configurations. 
    more » « less
    Free, publicly-accessible full text available August 1, 2026
  3. Abstract We present luminosity functions (LFs) and angular correlation functions (ACFs) derived from 18,960 Lyαemitters (LAEs) atz = 2.2−7.3 over a wide survey area of ≲24 deg2that are identified in the narrowband data of the HSC-SSP and CHORUS surveys. Confirming the large sample with 241 spectroscopically identified LAEs, we determine LyαLFs and ACFs in the brighter luminosity range down to 0.5L, and confirm that our measurements are consistent with previous studies but offer significantly reduced statistical uncertainties. The improved precision of our ACFs allows us to clearly detect one-halo terms at some redshifts, and provides large-scale bias measurements that indicate host halo masses of ∼1011Moverz ≃ 2−7. By comparing our LyαLF (ACF) measurements with reionization models, we estimate the neutral hydrogen fractions in the intergalactic medium to bexHi < 0.05 (= 0.06 0.03 + 0.12 ) atz= 5.7 andxHi= 0.1 5 0.08 + 0.10 ( 0.21 0.14 + 0.19 ), 0.1 8 0.12 + 0.14 , and 0.7 5 0.13 + 0.09 atz= 6.6, 7.0, and 7.3, respectively. Our findings suggest that the neutral hydrogen fraction remains relatively low,xHi ≲ 0.2, atz = 5−7, but increases sharply atz > 7, reachingxHi ∼ 0.9 byz ≃ 8−9, as indicated by recent JWST studies. The combination of our results from LAE observations with recent JWST observations suggests that the major epoch of reionization occurred atz ∼ 7−8, likely driven by the emergence of massive sources emitting significant ionizing photons. 
    more » « less
    Free, publicly-accessible full text available March 18, 2026
  4. Abstract Spatial curvature is one of the most fundamental parameters in our current concordance flat ΛCDM model of the Universe. The goal of this work is to investigate how the constraint on the spatial curvature is affected by an assumption on the sound horizon scale. The sound horizon is an essential quantity to use the standard ruler from the Cosmic Microwave Background (CMB) and Baryon Acoustic Oscillations (BAOs). As an example, we study the curvature constraint in an axion-like Early Dark Energy (EDE) model in light of recent cosmological datasets from Planck, the South Pole Telescope (SPT), and the Atacama Cosmology Telescope (ACT), as well as BAO data compiled in Sloan Digital Sky Survey Data Release 16. We find that, independent of the CMB datasets, the EDE model parameters are constrained only by the CMB power spectra as precisely and consistently as the flat case in previous work, even with the spatial curvature. We also demonstrate that combining CMB with BAO is extremely powerful to constrain the curvature parameter even with a reduction of the sound-horizon scale in an EDE model, resulting in Ω K = -0.0058± 0.0031 in the case of ACT+BAO after marginalizing over the parameters of the EDE model. This constraint is as competitive as the Planck+BAO result in a ΛCDM model, Ω K = -0.0001± 0.0018. 
    more » « less
  5. ABSTRACT We present, for the first time, an observational test of the consistency relation for the large-scale structure (LSS) of the Universe through a joint analysis of the anisotropic two- and three-point correlation functions (2PCF and 3PCF) of galaxies. We parameterize the breakdown of the LSS consistency relation in the squeezed limit by Es, which represents the ratio of the coefficients of the shift terms in the second-order density and velocity fluctuations. Es ≠ 1 is a sufficient condition under which the LSS consistency relation is violated. A novel aspect of this work is that we constrain Es by obtaining information about the non-linear velocity field from the quadrupole component of the 3PCF without taking the squeezed limit. Using the galaxy catalogues in the Baryon Oscillation Spectroscopic Survey (BOSS) Data Release 12, we obtain $$E_{\rm s} = -0.92_{-3.26}^{+3.13}$$, indicating that there is no violation of the LSS consistency relation in our analysis within the statistical errors. Our parameterization is general enough that our constraint can be applied to a wide range of theories, such as multicomponent fluids, modified gravity theories, and their associated galaxy bias effects. Our analysis opens a new observational window to test the fundamental physics using the anisotropic higher-order correlation functions of galaxy clustering. 
    more » « less
  6. ABSTRACT We report a new test of modified gravity theories using the large-scale structure of the Universe. This paper is the first attempt to (1) apply a joint analysis of the anisotropic components of galaxy two- and three-point correlation functions (2 and 3PCFs) to actual galaxy data and (2) constrain the non-linear effects of degenerate higher-order scalar-tensor (DHOST) theories on cosmological scales. Applying this analysis to the Baryon Oscillation Spectroscopic Survey (BOSS) data release 12, we obtain the lower bounds of −1.655 < ξt and −0.504 < ξs at the $$95{{\ \rm per\ cent}}$$ confidence level on the parameters characterizing the time evolution of the tidal and shift terms of the second-order velocity field. These constraints are consistent with GR predictions of ξt = 15/1144 and ξs = 0. Moreover, they represent a 35-fold and 20-fold improvement, respectively, over the joint analysis with only the isotropic 3PCF. We ensure the validity of our results by investigating various quantities, including theoretical models of the 3PCF, window function corrections, cumulative S/N, Fisher matrices, and statistical scattering effects of mock simulation data. We also find statistically significant discrepancies between the BOSS data and the Patchy mocks for the 3PCF measurement. Finally, we package all of our 3PCF analysis codes under the name hitomi and make them publicly available so that readers can reproduce all the results of this paper and easily apply them to ongoing future galaxy surveys. 
    more » « less
  7. Abstract We construct accurate emulators for the projected and redshift space galaxy correlation functions and excess surface density as measured by galaxy–galaxy lensing, based on halo occupation distribution modeling. Using the complete Mira-Titan suite of 111N-body simulations, our emulators vary over eight cosmological parameters and include the effects of neutrino mass and dynamical dark energy. We demonstrate that our emulators are sufficiently accurate for the analysis of the Baryon Oscillation Spectroscopic Survey DR12 CMASS galaxy sample over the range 0.5 ≤r≤ 50h−1Mpc. Furthermore, we show that our emulators are capable of recovering unbiased cosmological constraints from realistic mock catalogs over the same range. Our mock catalog tests show the efficacy of combining small-scale galaxy–galaxy lensing with redshift space clustering and that we can constrain the growth rate andσ8to 7% and 4.5%, respectively, for a CMASS-like sample using only the measurements covered by our emulator. With the inclusion of a cosmic microwave background prior onH0, this reduces to a 2% measurement of the growth rate. 
    more » « less
  8. Abstract The Hobby–Eberly Telescope Dark Energy Experiment (HETDEX) is an untargeted spectroscopic survey that aims to measure the expansion rate of the universe at z ∼ 2.4 to 1% precision for both H ( z ) and D A ( z ). HETDEX is in the process of mapping in excess of one million Ly α emitting (LAE) galaxies and a similar number of lower- z galaxies as a tracer of the large-scale structure. The success of the measurement is predicated on the post-observation separation of galaxies with Ly α emission from the lower- z interloping galaxies, primarily [O ii ], with low contamination and high recovery rates. The Emission Line eXplorer (ELiXer) is the principal classification tool for HETDEX, providing a tunable balance between contamination and completeness as dictated by science needs. By combining multiple selection criteria, ELiXer improves upon the 20 Å rest-frame equivalent width cut commonly used to distinguish LAEs from lower- z [O ii ] emitting galaxies. Despite a spectral resolving power, R ∼ 800, that cannot resolve the [O ii ] doublet, we demonstrate the ability to distinguish LAEs from foreground galaxies with 98.1% accuracy. We estimate a contamination rate of Ly α by [O ii ] of 1.2% and a Ly α recovery rate of 99.1% using the default ELiXer configuration. These rates meet the HETDEX science requirements. 
    more » « less